Al circa 2018

- While we wait to start, think about problems in the right...

- How to solve quadratic equation?
- $a x^{2}+b x+c=0$
- Who is learning better in new airplane mission simulator?

Pilot	Week 1	Week 2
Olivia	0%	75%
Oliver	25%	100%

- What is the next number in the sequence?
11, 21, 1211, 111221, ?

Quadratic equation solution

- From Algebra
- $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

- Why do we care?

Going to higher orders...

- Cubic equation... Anyone?
- $a x^{3}+b x^{2}+c x+d=0$
- Specific example...
- $x^{3}-2 x^{2}-5 x+6=0$
- What if...
- We plot it
- Or could solve it!

Evolution of AI

- Math
- Memory
- Models

Which AI?

- Today
- Applied AI (a.k.a. "weak AI" or "narrow AI")
- Out of scope
- Artificial General Intelligence, a.k.a., "strong Al" or "full Al"
- Consciousness
- Like in movies and TV series: 2001: A Space Odyssey, ́ㅣ, $\underline{\text { Her, }}$ Humans, Westworld, ...

Numerical Calculus: Newton (~1685-1740)

Computational power enabled brute force...

- k-Nearest Neighbors
- Pros: accuracy, insensitive to outliers, little "data preparation"
- Cons: computationally expensive
- Basic idea: "Tell me who you walk with..."

Movies: data

Movie	\# of kicks	\# of kisses	Type
A	3	104	Romance
B	2	100	Romance
C	1	81	Romance
D	101	10	Action
E	99	5	Action
F	98	2	Action
$?$	18	90	Unknown

Movies: Scatter chart

$$
d=\sqrt{\left(x_{a}-x_{b}\right)^{2}+\left(y_{a}-y_{b}\right)^{2}}
$$

Movies: Distance

Movie	\# of kicks	\# of kisses	Type	d?
$?$	18	90	Unknown	0.0
A	3	104	Romance	20.5
B	2	100	Romance	18.9
C	1	81	Romance	19.2
D	101	10	Action	115.3
E	99	5	Action	117.4
F	98	2	Action	118.9

Movies: Sorted Distance

Movie	\# of kicks	\# of kisses	Type	d?
?	18	90	Unknown	0.0
B	2	100	Romance	18.9
C	1	81	Romance	19.2
A	3	104	Romance	20.5
D	101	10	Action	115.3
E	99	5	Action	117.4
F	98	2	Action	118.9

What If? (BI Scenarios)

Pre-calculated "border"

Cluster representation

Right method and correctly implemented

A Few Useful Things to Know
About Machine Learning, by Pedro Domingos

Figure 3: Very different frontiers can yield similar class predictions. $(+$ and - are training examples of two classes.)

Training is costly...

Data analysis for an experiment

Grip and Release ：Scoring	Sort Hand													\checkmark		H：Inı			1	＋			
	4	（1）	4	\＄	4	3	4	0	0	3	1	＊	＊	\％	－	\int	－	1	6	t	e	5	©
Search．．．ρ	θ	0	－	\square	\bullet	θ	＊	㕸	θ	©	0	0	0	0	0	6	4	1	0	\leqslant	\＆	－	1
Hand	¢	\geqslant	\square	e	－	\％	\bigcirc	6	－	3	0	0	－	＊	0	E	8	\＃	E	\pm	－	8	0
Tagged	च	3	ะ	3	y	7	5	4	5	5	E．	B	会	0	道	d	－	ε	－	－	3	6	0
Scored	\pm	－	－	3.	4	\bigcirc	6	Δ	\geqslant	－	－	0	s	3	2	－	\cdots	，	3	\bigcirc	0	＊	\bullet
Hand． X	$\%$	6	0	\％	\square	\pm	\square	0	＊	＊	\％	0	1		0	0	θ	\square	21．		\star	0	－
Hand．Y	E	\bullet	2	＊	0		0	－	0	＊	3	\star	＊	19	＊	4	－	＊	0	\square	\star	\sim	\checkmark
Hand．Z	\cdots	0	v	－	d	\checkmark	$\stackrel{\rightharpoonup}{*}$	\checkmark	＊	＊	－	0	\＆	\bigcirc	$\stackrel{\rightharpoonup}{*}$	＊	Δ	＊	0	ε	Δ	－	5
Hand．TrackinqState	－	0	8	©	D	©	0	\star	5	\bigcirc	－	3	＊	）	－	v	－	9	－	\triangle	\bullet	\cdots	－
Frame Distance	F	F	0	8	0	3	a	3	－	5	\bigcirc	5	Q	\square	0	\square	θ	0	0	\bigcirc	＋	∇	0
Quadrant	\square	\％	क	0	E	－	5	8	®	\downarrow	0	1	a	2	I	－	V）	\bigcirc	1	\bigcirc	$\sqrt{3}$	－	－
	D	$\sqrt{7}$	8	\geqslant	\square	$4{ }^{4}$	Q	5	0	3	D	\pm	0	\sim	5	v	D	B	\square	N	0	3	0
	0	0	0	－	3	D	，	D	$\}$	D	1	－	？	b	0	4	y	D	17	1	0	人	0
	\bullet	Q	\geqslant	0	3	8	\bullet	2	0	1	－	O	0	5	＊	\star	0	4	3	\pm	4	\pm	0
	9	\checkmark	『	3	8	E	e	＊	E	\cdots	8	＊	D	＊	－	－	－	1	0	\cdots	＊	－	4
	\bigcirc	＊	0	v	D	ह	0	v	Δ	\cdots	0	\star	0	3	\＃	8	\bigcirc	5	c．	®	L	D	\checkmark
	＊	0	D	0	0	V	＊	8	3	$\stackrel{5}{5}$	－	©	1	8	\checkmark	3	9	－	0	$\stackrel{\rightharpoonup}{*}$	4	\bullet	－
	\pm	D	\wedge	0	ω	－	e	$*$	＊	＊	＊	＊	＊	＊	3	0	0	＊	＊	－	＊	\checkmark	v
	Y	\bigcirc	\square	4	\square	0	0	－	8	0	\sim	\cdots	－	\pm	D	D	－	3	0	0	0	＊	0
	Q	0	－	8	\％	E	8	＊	0	，	0	－	\bigcirc	\bullet	ω	＊	\geqslant	E	6	0	∇	\square	\square
	4	0	\square	D	－	－	D	A	0	0	\pm	$*$	0	＊	v	9	8	0	＊	\triangle	－	＊	

From Kinect for Windows presentation during
Microsoft Build 2013 event

What is this?

What is Deep Learning?

What is deep learning?

- Deep learning (also known as deep structured learning, hierarchical learning or deep machine learning) is a class of machine learning algorithms that: use a cascade of many layers of nonlinear processing units for feature extraction and transformation.
- But what *is* a Neural Network?
- Visualize: http://playground.tensorflow.org/

Who is learning better?

- Two pilots have been learning how to complete a difficult mission in an airplane simulator. Rates of success per week are in the table.

Pilot	Week 1	Week 2	Aggregated
Olivia	0%	75%	
Oliver	25%	100%	

Simpson's paradox

- Trend in different groups of data disappears or reverses when these groups are combined (a.k.a. reversal or amalgamation paradox)

Pilot	Week 1		Week 2			Aggregated
Olivia	$(0 / 1)$	0%	$(3 / 4)$	75%	$(3 / 5)$	60%
Oliver	$(1 / 4)$	25%	$(1 / 1)$	100%	$(2 / 5)$	40%

Accuracy paradox

Confusion matrix

	Predictive Positive	Predictive Negative
Positive samples	True Positive	False
Negative samples	False Positive	True

Accuracy

- $A=\frac{T P+T N}{T P+F P+T N+F N}$

Model comparison by accuracy

Model A

	Predictive Positive	Predictive Negative
Positive samples	100	50

Negative $\quad 150 \quad 9,700$

Model B

	Predictive Positive	Predictive Negative
Positive samples	1	149
Negative samples	1	9,849

$$
A_{(B)}=\frac{1+9,849}{1+1+9,849+149}=0.985
$$

F1 Score

Confusion matrix

	Predictive Positive	Predictive Negative
Positive samples	True Positive	False
Negative samples	False Positive	True

Measurements (Precision, Recall, F1)

- $P=\frac{T P}{T P+F P}$
- $R=\frac{T P}{T P+F N}$
- $F_{1}=2 \frac{P * R}{P+R}$

Model comparison by F1 Score

Model A

	Predictive Positive	Predictive Negative
Positive samples	100	50

Negative $\quad 150 \quad 9,700$ samples
$P=0.4, R=0.67, F_{1}=0.5$

Model B

	Predictive Positive	Predictive Negative
Positive samples	1	149
Negative samples	1	9,849
$P=0.5, R=0.0067$		$F_{1}=0.013$

Takeaways: Math and AI

- Computers evolved enabling expanded use of Numerical Calculus
- Someone in the team needs to understand the Math
- Math may be right, yet its interpretation may be incorrect

Any questions before we go to "Memory"?

- Math
- Memory
- Models

这是什么？

这是什么？

这是什么？

AI－Sep／2018－Alisson Sol－［34］

What just happened?

Your mind...

- Analyzed images
- Split it into components
- Associated such components with a verbal description

你有这段记忆吗？

AI－Sep／2018－Alisson Sol－［37］

你有这段记忆吗？

AI－Sep／2018－Alisson Sol－［38］

你有这段记忆吗？

Playing with Image Search

- https://images.google.com/
- https://www.bing.com/images/

Your thoughts

- How important are the features for the search?
- "An image is worth a thousand words"
- Would any 1,000 words be equivalent?

Movies: another dataset

Movie	Running Time (Minutes)	Revenue (\$ million)	Type
A	88	40.7	Romance
B	129	181.1	Romance
C	119	463.4	Romance
D	116	12.9	Action
E	102	53.4	Action
F	108	332	Action
?	115	15	Unknown

Movies: Scatter chart: kicks and kisses

Movies: Scatter chart: revenue and duration

Orphaned ML/AI projects

- Pattern for failed ML project
- Data was accumulated: Volume, Variety, Velocity, Veracity
- Model was built with "potential": success for initial anecdotes
- Then: different questions or need for more precise answers
- Result: project collapses
- Corollary: data is thrown away or lost
- https://toolbox.google.com/datasetsearch

The Human Brain Project Reboots: A Search Engine for the Brain Is in Sight

The massive $€_{1}$ billion project has shifted focus from simulation to informatics

By Megan Scudellari

Welcome to the Human Brain Project
The Human Brain Project aims to put in place a cutting-edge research infrastructure that will allow scientific and industrial researchers to advance our knowledge in the fields of neuroscience, computing, and brain-related medicine

				Lea	about t		n hippocampus. and team, Jülich.
Explore the Brain		Silicon Brains	Understanding Cognition	$\$$ Medicine		Massive Computing	Social, Ethical, Reflective

News

The pioneering partnership of
Supercomputing and Neuroscience in Europe

The Human Brain Project launches voucher programme

TUESDAY, 28 AUGUST 2018
Individual Brain Charting: A high-resolution brain
cognitive functions

Events

MONDAY, 15 OCTOBER 2018
HBP Open Day 2018 - Maastricht
Q MECC Maastricht

THURSDAY, 4 OCTOBER 2018
HBP Colloquium at
Forschungszentrum Jülich

- Central Library, Forschungszentrum Jülich

The Brain Simulation Platform
HBP School
Q Mondello (Palermo), Italy

VIEW ALL EVENTS

Al - Sep/2018 - Alisson Sol - [46]

Personal data collection: half-marathons

AI - Sep/2018 - Alisson Sol - [47]

Takeaways: Memory and AI

- Human memory is still poorly understood
- Try the reverse of current trend
- Start with the questions
- Build a model (proof of concept)
- Then seek for the data
- Iterate...
- Everything: questions, model, data

Any questions before we go to "Models"?

- Math
- पMem
- Models

Humans and modeling: our intuition is bad!

- Intelligence: "... can be more generally described as the ability to perceive or infer information, and to retain it as knowledge to be applied towards adaptive behaviors within an environment or context."
- Earth = center of universe, flat
- Birds fly, have feathers, ... from Icarus to Leonardo da Vinci
- Humans don't understand the "features"
- Sports, stock market, relationships, ...
- Models include abstractions: "gravity"

Cognitive biases

Biases and modeling

- Decision-making, belief, behavior
- Dunning-Kruger effect
- Irrational escalation (sunk cost)
- Parkinson's law of triviality (bikeshedding)
- Social biases
- Illusory superiority (Lake Wobegon effect)
- Fundamental attribution error
- Memory errors and biases
- Bizarreness effect
- Hindsight bias

How is Physics applied?

- Acceptance of multiple models
- No wrong or right model: the best predictor wins the day!
- Acceptance of imprecise answers
- Simplifies models, eliminating a lot of noise
- $F=m a$ and $E=m c^{2}$ only for ideal conditions
- Detaching models from data
- Nobel Prize in Physics 2017: Rainer Weiss, Barry C. Barish, Kip S. Thorne LIGO: Laser Interferometer Gravitational-Wave Observatory confirmed predictions by Albert Einstein 100 years ago
- Do you need to solve the general problem?
- Going from applied ML to applied AI

Airplane autopilot

- Ship's gyroscopic-compass set. \# 1,242,065, Elmer A Sperry
- Automatic pilot for airplanes \#1,707,690A, Lawrence B Sperry
- Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot with safety arrangements for transition from automatic pilot to manual pilot and vice versa

RECENT POSTS
Artificial Contucius intelligence.

Something controversial

lot and AgTech
Where Eagles Dare
What's cooking? lot in the Kitchen

RECENT COMMENTS
Joshua Ching on Blockchain + AI
Joshua Ching on loT and AgTech
cciw on Why Investors Really Care about
Impact Investing
cciw on Why Investors Really Care about ${ }_{\text {cjiw on Blockchain }+A}$
categories
summer2017 (277)
Uncategorized (8)
Week1 (49)
Weekz (50)
Week3 (50)
Week4 (46)
Week5 (49)

Flying Smarter: AI \& Machine Learning in Aviation Autopilot
Systems
Ey Ben Garlick on August 4, 2017 10:49 am
Categories: summer2017
Tags: Al, artificial intelligence, Aviation, machine learning
Many experienced airline travelers have experienced a common scenario-As the boarding time approaches, the gate agent announces that there will be a slight delay since the pilots are running behind schedule on their current flight. The passengers continue to wait as the plane and flight
attendants sit tide on the tarmac. Several companies are working to trans form the cockpit of the future to reduce or ootentially liminate the requirement for manned pilots, which would make this experience a relic of the past.
he average passenger i autopilot systems in use today in com mercial aviation. These systems have been around i passenger seats, the a airplanes flight management system (IFMS) and its associated autopilot functions are generally in control of the aircraft from shortly after takeoff until landing and rollou on the runway under normal operations. Instead of flying the aircraft manually through the flight controls, the crew manages the aircratt's systems through the FMS interface. Nearly all major airports utilize the CAT III "autoland" instrument landing system approaches where the pilot is only a backup to the automated landing system in the event of a failure and takes over once the plane is on the ground to taxi to the gate. CAT III approaches that would extend this autonomous control through the taxi process are in development in many places as well. These automated systems do have their limitations. In the event of a mechanical issue or extreme environmental issues such as severe turbulence, the autopilot may disengage and alert the pilot to take man information, and they reauire careful attention and oversight to ensure that the system is functioning as required. Many high profile incidents, including the tragic Air France Flight 447 crash in 2009, have resulted from miscommunications between the aircrew and the autopilot system. The pilot is still lutimately responsibl for flying the aircraft, and these systems function as ight control manipulation to allow the pilots to focus on communicating, navigating, and managing the flight as a whole.

Applied Machine Learning

- Get a goal
- Make a goal-related model
- Collect data
- Test hypothesis
- Apply prediction
- Maximize flight occupation
- Model for no-shows
- Gather ticket info
- Check predictions for no-shows
- Actions based on predictions
- Reminders/penalty for no-show
- Allow more overbooking

Passenger-Based Predictive Modeling of
 Airline No-show Rates

Richard D. Lawrence	Se June Hong
IBM T. J. Watson Research Ctr	IBM T. J. Watson Research Ctr
P. O. Box 218	P. O. Box 218
Yorktown Heights, NY 10598	Yorktown Heights, NY 10598
ricklawr@us.ibm.com	sjhong@us.ibm.com

Jacques Cherrier
Air Canada
P.O. Box 9000

Dorval, Quebec H4Y 1C2
jacques.cherrier@aircanada.ca

ABSTRACT

Airlines routinely overbook flights based on the expectation that some fraction of booked passengers will not show for each flight. Accurate forecasts of the expected number of noshows for each flight can increase airline revenue by reducing the number of spoiled seats (empty seats that might other wise have been sold) and the number of involuntary denied boardings at the departure gate. Conventional no-show fore casting methods typically average the no-show rates of his torically similar flights, without the use of passenger-specific information.
We develo
We develop two classes of models to predict cabin-leve no-show rates using specific information on the individual passengers booked on each flight. The first of these models computes the no-show probability for each passenger, us ing both the cabin-level historical forecast and the extracted passenger features as explanatory variables. This passengerlevel model is implemented using three different predictive methods: a C4.5 decision-tree, a segmented Naive Bayes alprobabilistic models. The second cabin-level model is forprobabilistic models. The second cabin-level model is for-
mulated using the desired cabin-level no-show rate as the mulated using the desired cabin-level no-show rate as the
response variable. Inputs to this model include the predicted cabin-level no-show rates derived from the various passenger-level models, as well as simple statistics of the features of the cabin passenger population. The cabin-level model is implemented using either linear regression, or as a direct probability model with explicit incorporation of the cabin-level no-show rates derived from the passenger-level model outputs.
The new passenger-based models are compared to a conventional historical model, using train and evaluation data sets taken from over 1 million passenger name records. Standard metrics such as lift curves and mean-square cabin-level errors establish the improved accuracy of the passengerbased models over the historical model. All models are also evaluated using a simple revenue model, and it is shown that
the cabin-level passenger-based model can produce between 0.4% and 3.2% revenue gain over the conventional model, depending on the revenue-model parameters

Categories and Subject Descriptors
.2.8 [Information Systems]: Database ApplicationsData mining

General Terms

Data mining

Keywords

Airline overbooking, no-show forecasting, predictive modeling, classification, probabilistic estimation, model aggrega-

INTRODUCTION

The practice of optimizing revenue by controlling the availability and pricing of airline seats is commonly referred to ment systems are in use at all major airlines today, and are widely viewed as a critical component of an airline's overall logistics framework. Rather than offering identical seats at a common fare, revenue management systems introduce nultiple booking classes differentiated by the offered fare as well as other possible restrictions such as cancellation options or overnight-stay requirements. The number of seats allocated to each booking class is determined by the estiare controlled in an attempt to maximize revenue. For ex ample, it is desirable to reserve seats in high-fare classes for last-minute travelers willing to pay higher fares, while limting the number of seats sold in lower-fare classes earlie in the booking process. Revenue management establishes booking policies to determine whether to accept or reject a booking in a specific booking class, given the current number of bookings and expected additional demand prior to departure.

End-to-end trip workflow

1. Luggage + documentation
2. Passenger gets to airport
3. Security checkpoints
4. Boarding
5. Flight + service
6. Leaving plane + connections
7. Luggage + customs + immigration
8. Airport to destination
9. Unpack...
10. Ouibring + documentation
11. Uber
12. Clear, TSA PreCheck
13. Waiting room + priority check-in
14. Classes of service
15. Class of service + connections
16. Priority luggage + entry systems
17. Uber
18. Unpack...

Workflows and "intelligence"

- Intelligence will come from optimizing the end-to-end workflow
- You wanted to play music
- Before: buy tape/vinyl/CD, put media on device, locate song, press play
- Then the media disappeared: song went directly to your iPod
- Then, full process was streamlined: "Alexa: play [song]"
- Conversational user interface
- Trying on assistant: Google: https://assistant.google.com/explore?hl=en us

What if airlines could...

- Predict flights by a class of passengers (holidays, Super Bowl)
- Offer full package: flight, accommodation, etc.
- Alert that a passport is about to expire ahead of trip
- Send transportation to customer houses
-...
- Summary: anticipate and optimize complete job end-to-end

Models and data

- Which models/data can be shared?
- Models about passenger behavior?
- Models about airline operations? (Crew, equipment, supply chain)
- Models about services?
- Should models be "regulated"?
- EU PNR (Passenger Name Record)
- What about auditing?

Al and Ethics

- Why is this a topic at all?
- Security and privacy
- Will the intelligence change the world/model?
- How could intelligence maximize revenue for a hospital?
- Overbooking scenario: which passenger would have to wait?

Takeaways: Models and AI

- Requirements
- Machine scalability
- Organizational expertise
- Data
- Experiments
- Libraries (software)
-"Think big and long term"

Q\&A

- Math
- M Memofy
- Mols
- Alisson Sol
email@AlissonSol.com
- What was the next number in the sequence?
11, 21, 1211, 111221, ?

